skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkins, Austin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid–liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer’s viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of + 1 / 2 nematic defects and 5–7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell–cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems. 
    more » « less
  2. Multiphase field models have emerged as an important computational tool for understanding biological tissue while resolving single-cell properties. While they have successfully reproduced many experimentally observed behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue monolayer and find that intercellular friction tends to solidify the tissue. Published by the American Physical Society2024 
    more » « less
  3. Using a multi-phase field model, we examine how cell stiffness affects motility induced phase separation (MIPS). 
    more » « less
  4. Toor, Gurpal S. (Ed.)
    Human agriculture, wastewater, and use of fossil fuels have saturated ecosystems with nitrogen and phosphorus, threatening biodiversity and human water security at a global scale. Despite efforts to reduce nutrient pollution, carbon and nutrient concentrations have increased or remained high in many regions. Here, we applied a new ecohydrological framework to ~12,000 water samples collected by the U.S. Environmental Protection Agency from streams and lakes across the contiguous U.S. to identify spatial and temporal patterns in nutrient concentrations and leverage (an indicator of flux). For the contiguous U.S. and within ecoregions, we quantified trends for sites sampled repeatedly from 2000 to 2019, the persistence of spatial patterns over that period, and the patch size of nutrient sources and sinks. While we observed various temporal trends across ecoregions, the spatial patterns of nutrient and carbon concentrations in streams were persistent across and within ecoregions, potentially because of historical nutrient legacies, consistent nutrient sources, and inherent differences in nutrient removal capacity for various ecosystems. Watersheds showed strong critical source area dynamics in that 2–8% of the land area accounted for 75% of the estimated flux. Variability in nutrient contribution was greatest in catchments smaller than 250 km 2 for most parameters. An ensemble of four machine learning models confirmed previously observed relationships between nutrient concentrations and a combination of land use and land cover, demonstrating how human activity and inherent nutrient removal capacity interactively determine nutrient balance. These findings suggest that targeted nutrient interventions in a small portion of the landscape could substantially improve water quality at continental scales. We recommend a dual approach of first prioritizing the reduction of nutrient inputs in catchments that exert disproportionate influence on downstream water chemistry, and second, enhancing nutrient removal capacity by restoring hydrological connectivity both laterally and vertically in stream networks. 
    more » « less